Question	Acceptable Answers	Reject	Mark
Number			
1(a)(i)	Lone pair(s) (of electrons on the nitrogen)	Spare pair	1
	ALLOW		
	Non-bonded pair(s)		

Question Number	Acceptable Answers	Reject	Mark
1(a)(ii)	$\begin{array}{l} CH_{3}CH_{2}CH_{2}CH_{2}NH_{2}+H_{2}O\rightleftharpoons\\ CH_{3}CH_{2}CH_{2}CH_{2}NH_{3}^{+}+OH^{-}\\ \\ ALLOW \rightarrow for \rightleftharpoons\\ IGNORE \ state \ symbols \ even \ if \ incorrect\\ \\ Right \ hand \ ions \ must \ be \ shown \ separately\\ \\ \\ ALLOW\\ \\ C_{4}H_{9}NH_{2} \end{array}$	Reject near misses	1

Question	Acceptable Answers	Reject	Mark
Number			
1(a)(iii)	two of:		2
	Butyl / alkyl groups are electron donating / are electron pushing / are electron releasing		
	Two (alkyl) groups in dibutylamine (but only one in butylamine)		
	Lone pair (of electrons) on the nitrogen more readily available / higher electron density on the nitrogen or NH ₂ or amine group / N more delta negative / N or NH ₂ accepts a proton more readily (2)		
	Stand alone marks		
	Accept reverse argument for butylamine		
	IGNORE 'electronegativity of nitrogen increasing'		

Question	Acceptable Answers	Reject	Mark
Number			
1(a)(iv)	mark		2
	For the idea of the lone pair being withdrawn		
	towards the ring		
	Long pair pulled into the ring		
	Lone pair pulled into the ring		
	Lone nair (of electrons) on the nitrogen		
	overlap		
	Lone pair interacts with π electrons / lone pair		
	interacts with delocalized electrons of the		
	(benzene) ring		
	Lone pair (of electrons) on the hitrogen		
	donated to the (benzene) hing (1)		
	NOTE		
	The reference to the lone pair may be found in		
	a later part of the answer and credited		
	Second mark		
	LIIHER		
	For the idea of the lone nair heing less		
	available		
	OR		
	The nitrogen (atom) must be specified as		
	below		
	e.		
	Lone pair is less readily available		
	Nitrogen (atom) has lower electron density		
	N (atom) or lone pair is less able to accept		
	protons / H ⁺		
	(1)		
	ALLOW		
	N is less of for second mark		

Question Number	Acceptable Answers	Mark
1 (b)	$I (Cu(H_2O)_6^{2+} + 2C_4H_9NH_2) \rightarrow Cu(H_2O)_4(OH)_2 + 2C_4H_9NH_3^{+}$	4
	ALLOW	
	$I (Cu(H_2O)_6^{2^+} + 2C_4H_9NH_2) \rightarrow Cu(OH)_2 + 2C_4H_9NH_3^+ + 4H_2O$ (2)	
	II $(Cu(H_2O)_6^{2+} + 4C_4H_9NH_2) \rightarrow Cu(H_2O)_2(C_4H_9NH_2)_4^{2+} + 4H_2O$	
	ALLOW II $(Cu(H_2O)_6^{2^+} + 4C_4H_9NH_2) \rightarrow Cu(C_4H_9NH_2)_4^{2^+} + 6H_2O$ (2)	
	Each correct equation scores 2 marks: 1 mark for the formula of the copper complex ion and 1 mark for the rest of the equation being correct Ligands can be in either order	
	IGNORE state symbols even if incorrect	
	IGNORE (lack of) square brackets around complex ions	

Question Number	Acceptable Answers	Reject	Mark
1 (c)	Reaction is a nucleophilic substitution (1)		2
	It is unusual because benzene normally reacts with electrophiles / by electrophilic substitution		
	OR		
	Positive charge withdraws electrons from the ring (making it susceptible to nucleophilic attack)		
	OR		
	Expect nucleophiles to be repelled by the electron density of the ring (1)		

Question Number	Acceptable Answers	Reject	Mark
2 (a)	$H_2NCH_2CH_2NH_2 + 2HCI \rightarrow H_3N^+CH_2CH_2NH_3^+ + 2CI^-$ (1) organic product	Covalent bond to CI, (-CI)	2
	Positive charges can be on nitrogens		
	Balancing with HCI and CI ⁻ (1)		
	Chloride ions can be at ends of product ie CIH ₃ NCH ₂ CH ₂ NH ₃ Cl for right hand side, with or without charges, but if given charges must balance		
	$H_2NCH_2CH_2NH_2 + 2H^+ \rightarrow H_3N^+CH_2CH_2NH_3^+ $ (2)		
	Reaction with 1 mol HCI for 1 max		
	If molecular formulae used 1 max		
	IGNORE state symbols even if wrong		

Question Number	Acceptable Answers	Reject	Mark
2 (b)(i)	Blue or green or blue-green or lavender ALLOW qualification of blue or green e.g. dark blue, but not with another colour e.g. blue purple	Any other colour e.g. Purple Violet	1

Question Number	Acceptable Answers	Reject	Mark
2(b)(ii)	The entropy change of the system is positive (1)		2
	Because there is an increase in the number of particles/entities/moles/molecules OR	Additional incorrect numbers	
The number of particles/entities/moles goes from four to seven	molecules/ atoms		
	OR	to seven	
	Complex with three molecules goes to a complex with six molecules (1)		
	Second mark depends on a positive entropy change		

Question Number	Acceptable Answers	Reject	Mark
2(b)(iii)	They will rotate the plane of plane- polarised light (equally in opposite directions) Allow They will rotate the plane of polarised light (equally in opposite directions) OR They will rotate plane- polarised light (equally in opposite directions)	Optically active Reflect/ bend/ refract	1

Question Number	Acceptable Answers	Reject	Mark
2 (c)(i)	O CCH ₂ CH ₂ C ⁷ O CH ₂ CH ₂ NH NH		2
	Amide linkage correct(1)		
	Further detail correct, including trailing bonds (1)		
	IGNORE brackets ALLOW multiple units		
	Second mark dependent on correct amide link		
	ALLOW fully correct structural formulae for 1		
	(OCCH ₂ CH ₂ CONHCH ₂ CH ₂ NH)		
	Can start with NH group		

Question Number	Acceptable Answers		Reject	Mark
2(c)(ii)	Condensation Hydrogen chloride/HCl/water/H ₂ O or another small molecule/is produced/lost/formed/removed (as v as the polymer) Mark independently	(1) well (1)	Addition/elimination	2

Question	Acceptable Answers	Reject	Mark
Number			
*2(c)(iii	Types of force Hydrogen bonds		5
	and (permanent) dipole(-permanent dipole) forces	Just p.d p.d	
	and London/van der Waals'/dispersion forces OR		
	Explanation e.g temporary/induced dipoles (1)	Just v d W	
	All three needed for 1 st mark (which is given even if the forces are later explained incorrectly)		
	Hydrogen bonds (Between) the hydrogen atoms on the nitrogen atoms and OR		
	(Between) N-H and		
	(1)		
	(the lone pair of electrons on) oxygen/ nitrogen atoms (1)		
	These marks can be shown by a diagram		
	Permanent dipole-permanent dipole		
	Because the C=O / carbon-oxygen bond/the C-N bond is polar/a dipole		
	N and/or O are electronegative atoms		
	This mark can be shown by a diagram providing the polarity of the bond is shown (1)		
	London forces Polymer has large number of/many electrons OR Explanation e.g temporary/induced/fluctuating dipoles	Large molecular mass alone	

Question Number	Acceptable Answers	Reject	Mark
3(a)(i)	Formula showing $-NH_3^+$ and $-COO^-/-CO_2^-$		1
	Charges can be anywhere on functional group		
	Rest of the molecule must be correct		
	ALLOW displayed/part displayed formula		

Question Number	Acceptable Answers	Reject	Mark
3(a)(ii)	Any two from		2
	High energy needed (to overcome) (1)		
	strong ionic/electrostatic forces OR strong forces between oppositely charged ions/between positive and negative (1)	any reference to intermolecular forces eg (strongly) polar/bond	
	between different (zwitter)ions	polarity	
	OR		
	between $-NH_3^+$ and $-COO^-$	if they state the ionic bond is	
	OR	molecule	
	between one molecule and another		
	OR		
	Chains of zwitterions/molecules (1)		

Question Number	Acceptable Answers	Reject	Mark
3(a)(iii)	ноно 		2
	Correct peptide link (1)		
	Minimum two residues and extension to the rest of the molecule (1)		
	ALLOW -NHCH ₂ CONHCH ₂ CO- (2)		
	Drawn the other way round, i.e. starting with the carbonyl group		
	Brackets around outside with `n' ie () n		
	Second mark depends on first		

Question	Acceptable Answer	Reject	Mark
Number	Key Points		5
QWC	Key Folles		5
	KP1 Spot (of hydrolysate) on paper/tlc/thin layer chromatogram (1)	Spot one amino acid/protein	
	KP2 Marker spots of known amino- acids/measure R _f (1)		
	KP3 Run in (suitable)solvent/discussion of comparativesolubilities in phases(1)	Water alone as solvent	
	KP4 (Spray with) ninhydrin (and heat) [Stand alone mark] (1)		
	KP 5 Marker spots and the unknownspots correspondALLOWCompare Rf values of marker spotswith hydrolysate spots(1)		
	OR		
	If 2-d chromatography used (2 different solvents run in two directions at right angles):		
	KP1 Spot (of hydrolysate) on paper/tlc/thin layer chromatogram (1)	Spot one amino acid	
	KP2 Run in (suitable) solvent in one direction(1)		
	KP3 Develop in suitable/different solvent at right angles OR discussion of comparative solubilities in phases (1)		
	KP4 Spray with ninhydrin (andheat) (1)		
	KP5 Compare hydrolysate spots with same experiment for known amino acids (1)		
	OR		

if column/GLC/GC used			
KP1 Put amino acid mixture (Hydrolysate) into column	(1)	Spot one amino acid	
KP2 Separately known amino-ac into column	cids (1)		
KP3 Detect amino acids in efflue with Ninhydrin/mass spectromet	ent ry (1)		
KP4 Measure retention times/ discussion of comparative solubi in phases	lities (1)		
KP 5 Compare retention times	(1)		